
Generalizations of the Random Forest Kernel
Matthew Olson

Department of Statistics, University of Pennsylvania

Philadelphia, PA

maolson@wharton.upenn.edu

Adam Kapelner

Queens College, City University of New York

New York, NY, USA

kapelner@qc.cuny.edu

Abraham J. Wyner

Department of Statistics, University of Pennsylvania

Philadelphia, PA, USA

ajw@wharton.upenn.edu

Richard Berk

Department of Statistics, University of Pennsylvania

Philadelphia, PA, USA

berkr@wharton.upenn.edu

ABSTRACT
A random forest contains an implicit measure of similarity between

points in the input space known as the proximity function. The

proximity function simply gives the fraction of trees in a forest for

which two points fall in the same terminal node. While useful in a

great number of applications, this measure is also quite crude, as it

ignores all of the information contained in a tree other than its ter-

minal nodes, such as the quality and depth of its splits. In this paper,

we construct a rich class of kernels derived from a random forest

which generalize the proximity function. Moreover, we demonstrate

that these kernels are useful alternatives to the proximity function

in probability estimation and visualization examples.

CCS CONCEPTS
• Information systems→ Data mining;

KEYWORDS
Random forest, kernel learning, visualization, probability estima-

tion

ACM Reference Format:
Matthew Olson, Adam Kapelner, Abraham J. Wyner, and Richard Berk.

2018. Generalizations of the Random Forest Kernel. In Proceedings of KDD
Conference (KDD 2018 Research Paper). ACM, New York, NY, USA, Article 4,

9 pages.

1 INTRODUCTION
Random forests are among the best off-the-shelf classifiers in exis-

tence. A common explanation for their excellent performance relies

on ensemble principles: a random forest achieves bias reduction

from its deep, un-pruned trees, and variance reduction from averag-

ing de-correlated trees [3]. More recent work has painted random

forests through the lens of kernel regression [2, 15, 17]. From this

point of view, a random forest works well because it is able to de-

tect training data that is similar to a target point when making a

prediction [12]. The similarity measure implicit in a random forest

is the proximity function, which measures the fraction of trees in

the forest for which two points appear in the same terminal node.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

KDD 2018 Research Paper, August 2018, London, United Kingdom
© 2018 Copyright held by the owner/author(s).

The proximity function notion of similarity is intriguing since

it is learned directly from the data. For example, one finds that in

simulated examples with a sparse signal, the proximity function

tends to be more “pointed" in the direction of signal variables and

“flatter" in the direction of noise variables [15]. In contrast, most

kernel methods in machine learning utilize a fixed, predefined

kernel, such as a radial basis function. While there have been efforts

in the kernel learning literature to learn ideal kernels for different

generative processes [10], the random forest does this implicitly

and automatically.

We will illustrate in this paper that the proximity is far from the

only notion of similarity one can extract from a random forest. One

obvious shortcoming of the proximity function is that it only utilizes

part of the total knowledge encapsulated in a tree, namely, terminal

node membership. In later sections we will provide examples in

which terminal node membership is largely uninformative. In these

examples, split quality, especially near the root of the tree, is much

more important. We will propose a new similarity kernel derived

from a random forest that incorporates a richer set of information

from the tree. Moreover, we will illustrate the practical advantages

of this kernel over the proximity function in probability estimation

and visualization tasks.

2 BACKGROUND
We will begin with a mathematical framework for a random forest.

This framework will make it natural to draw a close connection

between random forests and kernel functions. Specifically, we will

find that the proximity function falls easily out of the definition

of a random forest’s probability estimates. Subsequent sections

will make strides toward generalizing this kernel by incorporating

additional information learned from the training data during the

tree growing process.

2.1 Random Forest Ensembles
In this section we will describe a random forest as originally defined

in Leo Breiman’s seminal 2001 paper [3]. A random forest is a collec-
tion of T unpruned CART decision trees, where each tree is grown

on a bootstrap sample of the data, and the split variable at each node

of the tree is chosen to be the best among a subset of F randomly

chosen predictors. Software implementations often include F as a

parameter named mtry, as in the R library randomForest [11], or
max_features, as in the Python machine learning library sklearn
[16]. We model the randomness injected into each tree - such as

the bootstrap sample and the subset of variables considered at each

KDD 2018 Research Paper, August 2018, London, United Kingdom M. Olson et al.

node - through a random variable θ ∈ Θ. For our purposes, θ will be
used primarily as a way to index trees in the forest. Finally, observe

that each random forest tree partitions the input space X into a set

of hyper-rectangles. For a tree generated by parameter θ , we will
denote by Rθ (x) the hyper-rectangle that contains a point x ∈ X.

We can now leverage this notation to more formally define a

random forest tree. We will make a couple of simplifying assump-

tions to lighten the notation, which are often considered in the

literature [2]. In particular, we assume that each random forest

tree is grown to maximal depth so that each terminal tree node

contains exactly one sample point. We will also omit the use of

bootstrap sampling. After fitting a random forest to training data

(x1,y1), . . . , (xn ,yn), we denote the prediction made by the tree

generated by the parameter θ at a point x ∈ X by

f (θ ,x) =
n∑
i=1
I (xi ∈ Rθ (x))yi .

In words, to make a prediction, simply drop x down the tree, find

which cell Rθ (x) it occupies, and assign it the label yi correspond-
ing the unique training point xi that lies in that cell.

A random forest makes a class prediction by taking the majority

vote among f (θ1,x), . . . , f (θT ,x). It is also common practice to

extract probability estimates from a fitted random forest by con-

sidering the fraction of trees in the forest that vote for a certain

class [4, 11, 15]. In our notation, we may write the random forest

probability prediction at a point x by

p̂r f (y = 1|x) =
1

T

T∑
t=1

f (θt ,x)

=
1

T

T∑
t=1

n∑
i=1
I
(
xi ∈ Rθt (x)

)
yi

=

n∑
i=1

*.
,

1

T

T∑
t=1
I
(
xi ∈ Rθt (x)

)+/
-
yi .

The item in parenthesis on the last line has the straightforward

interpretation as the fraction of trees in the forest for which xi
and x occupy the same terminal node. This quantity is important

enough to warrant a definition.

Definition 2.1 (The Proximity Function). The random forest prox-
imity function Kprox

: X × X → [0,1] is defined by

Kprox (x ,z) =
1

T

T∑
t=1
I
(
xi ∈ Rθt (x)

)
.

With this definition, we may equivalently write the probability

estimate as

p̂r f (y = 1|x) =
n∑
i=1

Kprox (x ,xi)yi . (1)

Thus, random forest probability estimates have the satisfying inter-

pretation as a weighted sum of the training data, where the weights

are given by a similarity function between the target point x and

each training points xi . The larger the value of K
prox (x ,xi), the

more weight (xi ,yi) is given when informing the predicted value.

2.2 The Proximity Kernel
The proximity function is an intuitive quantity that measures the

similarity between points in the predictor space: the more often

that two points x and z appear in the same terminal node of a

randomly grown tree, the more similar we expect them to be. Our

notation for the proximity function suggests that it is a positive

semi-definite kernel (i.e. Mercer kernel), which turns out to be the

case [2]. Furthermore, since the proximity function is an average

over a large number of trees, one can also argue that Kprox (x ,z)
is a finite sample approximation to Pθ (x ∈ Rθ (z)), and that the

convergence to this probability happens almost surely as T → ∞
[2]. Expressed in slightly different terms, the proximity function

can then be seen to be an approximation to the probability that a

randomly chosen recursive partition of the input space contains

the points x and z.
Historically, it has been much more common in the literature

to motivate the proximity function through its numerous applica-

tions rather than its link to probability estimation. For instance, the

proximity function is used for visualization, outlier detection, miss-

ing data imputation, archetypal analysis, and clustering [4]. One

distinctive advantage of the proximity function over fixed kernels -

such as radial basis functions - is that its shape is adaptively learned

from the data. This makes it especially appealing for situations in

high dimensions with sparse signals. More recently, there has been

a focus on tying the proximity function to prediction. Some work

has evaluated the proximity function’s utility as a kernel in support

vector machines [6, 7], while [15] and [17] explore its use in kernel

regression.

3 RANDOM TREE KERNELS
We saw that Kprox

is one natural notion of distance implied by

a random forest ensemble. However, this measure is quite crude

in some sense, as the only information it uses from a particular

tree in the ensemble is terminal node membership. For a given

tree, closeness is binary: two points are either in the same terminal

node, or they or not. In this section, we will see that there are many

other types of tree-based distance measures that incorporate much

richer information, including a tree’s structure and split quality. We

will then demonstrate that alternative kernels that account for this

information can lead to measurable improvements in probability

estimation and visualization. A more exhaustive comparison in

these areas can be found in Section 4.

3.1 Topology-Induced Kernels
In Section 2, we saw that the terminal nodes of a tree produce a

partition of the input space. Moreover, this partition is recursive and

hierarchical: one can extract sequentially more coarse partitions

from the tree by pruning terminal nodes. As a toy example, consider

Figure 1. The first split in the tree separates the data in two vertical

halves, while the second level of splits separates the right cell into

two further horizontal halves. According to the proximity measure

of similarity, the points x and z have a similarity of 0, despite sharing

the same cell of the first partition.

This binary notion of distance can be too crude in some circum-

stances. For instance, suppose we want to analyze the performance

of school-age children on a standardized test. We might produce a

Generalizations of the Random Forest Kernel KDD 2018 Research Paper, August 2018, London, United Kingdom

xz
(a)

xz

(b)

Figure 1: Equivalence between tree representation (a) and
training data partition (b).

hierarchical partition of these students according to school, grade,

and class. We would expect that two students taken from the same

school and grade would display some level of similarity on this test,

even if they were not in the same class. This motivates the need

to consider similarity between partition cells at depths other than

terminal nodes.

One such notion of tree-based distance is the path metric, which
is simply the shortest distance between two nodes in a tree where

each edge has a cost of one [19]. We can then define a measure of

distance d : X × X → N between two points in our input space to

be the path distance between the terminal nodes containing each

of these points. For instance, in Figure 1, the path distance between

x and z in this metric is d (x ,z) = 2.

Previous work has constructed a tree kernel from the path metric,

K
path
λ (x ,z) = e−λd (x,z) [7]. As the parameter λ grows to infinity,

K
path
λ reduces to Kprox

. As λ decreases to zero, the similarity of

two points (with respect to this metric) only depends on the fraction

of the trees in the forest for which both points share splits near

tree roots. In Section 3.2, we will prove that the K
path
λ is in fact a

kernel, and in Section 4 we will analyze its performance when used

in kernel regression for probability estimation.

Metrics based solely on path distance suffer from the obvious

shortcoming that they ignore the informativeness of the splits pro-

ducing the tree nodes. This problem is especially relevant in a

random forest, for which the most informative splits in a given tree

tend to occur near the root for large values of F [18].

In order to make this more clear, let us consider a simple probabil-

ity model in which x is drawn uniformly on [0,1]2 and conditionally

on x , p (y = 1|x1 > 0) = 0.3 and p (y = 1|x1 ≤ 0) = 0.7. Only the

first coordinate of x informs the conditional probability of the re-

sponse. Suppose we fit a random forest tree to a data set generated

by i.i.d. (x ,y) pairs generated from this probability model. If a node

in the tree splits on the first coordinate (and assuming this happens

at the optimal population split x1 = 0), all subsequent splits by its

descendants will be due to noise alone. Furthermore, note that with

high probability, any terminal node will contain an ancestor node

that splits on the first coordinate. Thus, the path distance between

two nodes is irrelevant, especially near the bottom of the tree. What

x

z

�i1

�i2

�i3

(a)

Figure 2: Tree along with node impurity decreases to illus-
trate the calculations of K∆ (x ,z).

does matter is the whether two nodes share a certain informative
split.

One may wonder if there are other types of kernels that can be

built from tree topology alone. A natural way to approach this prob-

lem is to form the graph adjacency matrix associated with the tree,

and to consider various metrics on the rows of this matrix. However,

it was shown that practically all metrics one might consider, includ-

ing Cosine similarity, Tanimoto similarity, Pearson correlation, or

resistance measures, all reduce to degenerate measures similar to

the proximity matrix [22]. This occurs since the degree of a tree

leaf is one. In other words, one must look elsewhere to find other

tree based metrics.

3.2 Incorporating Split Information into
Similarity Measures

The previous section motivates our search for tree-based similarity

measures that incorporate split information at each node. The most

natural measure of split quality is the magnitude of the resulting

impurity decrease [5]. This quantity also has an important role

in tree-based variable importance [5, 13]. Let us recall the node

splitting process that occurs when building a CART tree rooted

at a node t. Among all possible candidate splits that produce two

daughter nodes tL and tR , the CART procedure chooses the split

for which the impurity decrease

∆i (t) ≡ ϕ (t) − (pLϕ (tL) + pRϕ (tR)) (2)

is maximized, where pL and pR are the fraction of training points

from t that are located in nodes tL and tR , respectively, and ϕ is a

measure of impurity, such as the Gini index.

We propose a new kernel K∆
that measures the similarity be-

tween two points x and z in a way can be thought of as a weighted

graph distance. For each of these points, we can keep track of the

values of the impurity decreases ∆i as we traverse from the root

node to each of the terminal nodes containing x and z, respectively.
Intuitively, we assign a similarity to x and z depending upon what

fraction of the total decrease in node purity from root to leaf is

shared for both points.

In order to make our discussion concrete, we will develop our

definition in the context of the tree in Figure 2. The path leading

to the terminal node containing x results in a total decrease in

KDD 2018 Research Paper, August 2018, London, United Kingdom M. Olson et al.

impurity of ∆i1 + ∆i2 + ∆i3, while the path leading to z results in a

total decrease of ∆i1 + ∆i2. The terminal cells that contain x and

z share only one common split that leads to an impurity decrease

of ∆i1. We do not count the decrease ∆i2 which occurs at the least

common ancestor node as common for the obvious reason that x
and z are assigned different “directions" after passing through this

split. Given these quantities, we define, the ∆-similarity between x
and z as

K∆ (x ,z) ≡

√(
∆i1

∆i1 + ∆i2 + ∆i3

) (
∆i1

∆i1 + ∆i2

)
.

An alternative way of viewing this quantity is as follows. The total

amount of decrease in node impurity leading to x is ∆i1 + ∆i2 +

∆i3, and a fraction
∆ii

∆i1+∆i2+∆i3 of this decrease is shared with z.

Conversely, a fraction of
∆ii

∆i1+∆i2 of the total path sum of impurity

decrease leading to z is shared with x . In order to aggregate these

two fractions into one measure, we simply take their geometric

mean. We chose the geometric mean as an aggregator because of

its connection to the cosine kernel, which appears in the proof of

Proposition 3.2. Later discussion will mention some alternatives.

More formally, fix a tree withM total nodes, and index the nodes

according tom = 1, . . . ,M . Suppose that A = {i1, . . . ,ia } indexes
the nodes leading from the root to the terminal node containing x ,
and B = {j1, . . . , jb } indexes the nodes leading from the root to the

terminal node containing z, and ℓ is the index of the least common

ancestor between these terminal nodes. This notation allows us to

define the kernel K∆
.

Definition 3.1 (The ∆ Kernel). The kernel K∆
: X × X → [0,1] is

defined by

K∆ (x ,z) =

√(∑
k ∈C ∆i (tk)∑
a∈A ∆i (ta)

) (∑
k ∈C ∆i (tk)∑
b ∈B ∆i (tb)

)
where C = (A − {ℓ}) ∩ (B − {ℓ}).

This new measure of similarity satisfies some comforting prop-

erties. First, if the terminal nodes containing x and z contain no

common splits, then K∆ (x ,z) = 0. If x and z share the same ter-

minal node, then clearly K∆ (x ,z) = 1. Furthermore, recall the

one-dimensional probability model given in Section 3.1 for which

only the first coordinate contained information about the response.

After splitting on the first coordinate, any further splits will lead to

small decreases in impurity since the residual values in nodes are

equally likely to have the value y = 1 or y = 0. Thus, the distance

between any points located in a subtree rooted at a node cause by

a split on the first dimension should be small. Despite being far

apart in “node-space," these points are close with respect to K∆
.

Finally, note that we defined K
path
λ and K∆

for individual trees.

Their extensions to an ensemble of trees is obvious: compute these

kernels for each tree in the ensemble and average.

We will now argue that the three “kernels" Kprox
, K

path
λ , and

K∆
are all positive semi-definite Mercer kernels. There are two

important reasons for doing this. The first is that we want to ensure

that these functions have the basic properties we would expect

from a well-defined similarity measure, such as symmetry. The

second reason is numerical: the routines used in popular kernel

methods all require positive semi-definite input matrices (such as

in the multidimensional scaling applications we consider later in

the paper). Note that it has already been proved in the literature

that Kprox
is a Mercer kernel, but from a much different approach

than Proposition 3.2.

Proposition 3.2. The functionsKprox ,Kpath
λ , andK∆

: X×X →

[0,1] are all positive semi-definite Mercer kernels.

Proof. The proof will rely on basic facts about Mercer kernels

that the reader can find in [21] or [20]. In each case, the target

kernel is an average of kernels produced by each tree. Since it is the

case that if K1, . . . ,KT are all kernels so is K ≡ 1/T (K1 + · · · +KT),
it remains only to show that the kernel induced by each tree is

a Mercer kernel. We will also rely heavily on the fact that if K :

W ×W → R+ is a kernel and д : X → W is a function, then

Kд (x1,x2) ≡ K (д(x1),д(x2)) is a kernel. In each case below, we

produce a mapping д and a base kernel K .

(a) Kprox

Suppose that the tree hasM terminal nodes, and index each

of these nodes bym = 1, . . . ,M . Let д : X → [0,1]M , where

(д(x))m is the indicator function of whether x lies in the ter-

minal node with indexm. Then Kprox (x ,z) = ⟨д(x),д(z)⟩.

(b) K
path
λ

Suppose that the tree has M total nodes, and index these

nodes bym = 1, . . . ,M . Let д : X → [0,1]M , where (д(x))m
is the indicator function of whether x lies in a terminal

node that is a descendant of node m. We will show that

K
path
λ (x ,z) = exp

(
−λ | |д(x) − д(z) | |2

)
. In order to see this,

notice that | |д(x) − д(z) | |2 is the path distance d (x ,z) be-
tween the terminal nodes containing x and z: | |д(x) | |2 gives
the depth of the path leading to the terminal node con-

taining x , | |д(z) | |2 in the case of z, and ⟨д(x),д(z)⟩ is the
depth of the least common ancestor of the terminal nodes

containing x and z. Finally, | |д(x) − д(x) | |2 = | |д(x) | |2 +
| |д(z) | |2 − 2⟨д(x),д(z)⟩, which is equivalent to the node dis-

tance between x and z in light of the preceding interpre-

tations. The kernel K is taken to be the Gaussian kernel

exp

(
−λ | |x − z | |2

)
.

(c) K∆

Suppose that the tree has M total nodes; we will index all

these nodes, excluding the root node, bym = 1, . . . ,M − 1.
Suppose ϕ : {1, . . . ,M − 1} → R+ is any function mapping

tree nodes to positive scalars. In the case of K∆
, this function

can be taken to beϕ (m) =
√
∆im . Now letд : X → [0,1]M−1

where (д(x))m is ϕ (pa(m)) if the terminal node containing

x is a descendant of nodem, and 0 otherwise. The kernel K

is taken to be the cosine kernel
⟨x,z⟩
| |x | | | |z | | .

□

We conclude this section by mentioning that the types of kernels

described here are far from exhaustive, and there are numerous

avenues for refinement. Focusing on the case of K∆
, the use of the

geometric mean to aggregate the fraction of shared decrease in

impurity was chosen since it could be easily mapped to the cosine
kernel mentioned in the proof of Proposition 3.2. One can also

show that the harmonic mean of these two quantities gives rise to

Generalizations of the Random Forest Kernel KDD 2018 Research Paper, August 2018, London, United Kingdom

a kernel [1] (or any of the dozens of kernels mentioned in [20]). As

another variation, one might consider weighting the decreases in

impurity by the depth that these splits occur in the tree. The main

point is that the typical way in which one uses trees in a random

forest to measure similarity is far from the only one. In the next

two sections, we will give simple use-case examples to illustrate

the power of this generality.

3.3 Kernel Comparison I: Probability
Estimation

We saw in Section 2.1 that the probability estimates produced by a

random forest are similar to those produced by kernel regression

using the proximity kernel.We can use the class of kernels discussed

in the previous section to produce competing kernel regression

probability estimates. In particular, in this section we will compare

the probability estimates resulting from a random forest to those

obtained with kernel regression using K∆
and K

path
λ for λ = 0.4,

and kernel regression with a radial basis function with variance

parameter 0.1. The value of λ = 0.4 was tuned with out-of-bag

(OOB) data. This procedure is described further in Section 4.

The probability model we consider generates observations in

the following manner:

z ∼ Unif(1,2,3,4)

x |z ∼ N (µz , I2×2)

y |z ∼ Ber(pz)

where µ1 = (−2,−2),µ2 = (−2,2),µ3 = (2,−2),µ4 = (2,2) and p1 =
0.1,p2 = 0.3,p3 = 0.3,p4 = 0.9. In words, we draw observations

uniformly at random from four clusters, where x is drawn from a

cluster dependent normal distribution, and y is a Bernoulli random

variable with a cluster dependent success probability. It is worth

noting at this point that a simple depth-2 decision tree with four

total terminal nodes is optimal for probability estimation in this

problem.

We generate n = 1,000 observations from this model and com-

pare the resulting probability estimates from each of the four meth-

ods on a hold-out set of sizen = 1,000 (F = 1 and 250 trees). Figure 3

plots histograms of the estimated probabilities from each method.

Observe first that our underlying probability model only admits

three possible probabilities - 0.1, 0.3, and 0.9 - so an ideal estimator

would produce a histogram where the mass concentrates at these

values. These values are marked in each plot by red vertical lines.

The random forest estimates and the radial basis function proba-

bility estimates are both very similar, and quite disperse, with no

clear modes. The remaining two sets of estimates all have three

sharp modes, although some bias occurs in each. Note that the qual-

ity of probability estimate produced by K
path
λ will depend critically

on tuning λ correctly. As λ → ∞, the kernel will collapse to Kprox
,

while as λ → 0, the kernel effectively causes the tree to collapse

to its root. The variance parameter for the RBF was chosen to be

very small in order to make the kernel overly “sharp," so that the

final estimator resembled something like one-nearest neighbors. It

is clear that if the kernel is too sharp, the probability estimates will

suffer from high variance.

0

50

100

150

0.00 0.25 0.50 0.75 1.00

Probability

co
un

t

(a) Random Forest

0

100

200

0.00 0.25 0.50 0.75 1.00

Probability

co
un

t

(b) K∆

0

50

100

150

200

0.00 0.25 0.50 0.75 1.00

Probability
co

un
t

(c) Knode
0.4

0

50

100

150

200

0.00 0.25 0.50 0.75 1.00

Probability

co
un

t

(d) RBF

Figure 3: Histogramof probability estimates using a random
forest, and kernel regression with kernels K∆, Kpath

0.4 , and a
radial basis function with variance parameter 0.1.

In this light, we can analyze the kernel weights to see why K∆

and K
path
0.4 perform better than the random forest in this example.

The random forest proximity matrix tends to be very sparse, since

the training points that impact each prediction - the “voting points" -

are concentrated in small neighborhoods [12]. This is not surprising.

The proximity measure of similarity is zero or one depending upon

whether two points are in the same terminal node of a tree, and

terminal nodes map to rectangles with small volume since each

random forest tree is grown deep. The kernel matrix for the RBF

is also very nearly sparse, since we chose a very small variance

parameter. On the contrary, the weights in the other two kernels

are much less sparse, meaning that more training points inform the

probability estimates. In this particular example, the neighborhoods

in which the probability model takes constant values is relatively

large, so one can leverage more training data when producing

probabilities.

3.4 Kernel Comparison II: Visualization
We will also consider a second application for random forests: di-

mensionality reduction and data visualization [4]. Given the a set

of training points x1, . . . ,xn and a kernel K , one can form a “dis-

tance" matrix D ∈ Rn×n where (D)i,j = 1 − K (xi ,x j). If K is posi-

tive semi-definite, bounded above by 1, and satisfies K (xi ,xi) = 1

for i = 1, . . . ,n, it can be shown that there exists an embedding

ψ : X → Rm form ≤ n such that | |ψ (xi)−ψ (x j) | |
2 = Di,j . One can

find such an embedding through multidimensional scaling (MDS).

After fitting a random forest, it is common in practice to use the

KDD 2018 Research Paper, August 2018, London, United Kingdom M. Olson et al.

−0.2

0.0

0.2

−0.2 0.0 0.2
z1

z 2

y

0.1

0.3

0.9

(a) Random Forest

−0.50

−0.25

0.00

0.25

0.50

−0.50 −0.25 0.00 0.25 0.50
z1

z 2

y

0.1

0.3

0.9

(b) K∆

−0.2

0.0

0.2

−0.2 0.0 0.2
z1

z 2

y

0.1

0.3

0.9

(c) Kpath
0.4

Figure 4: Proximity plots produces by random forests, K∆,
and K

path
0.4 .

proximity kernel Kprox
to produce an embedding of the data in R2

using the first few coordinates from MDS. The resulting plots are

known as proximity plots.
Proximity plots tend to have a characteristic star-shape, which

has caused some to question how well they represent the data. The

authors in [8] claim that

“Proximity plots for random forests often look

very similar, irrespective of the data, which

casts doubt on their utility. They tend to have

a star shape, one arm per class, which is more

pronounced the better the classification perfor-

mance."

Returning to discussion in the previous section, since the proximity

function has a binary similarity criteria based on node membership,

points x and z in the input space can only be considered to be similar

if they are also close in a Euclidean sense. In other words, if x and

z are far apart in the input space X, the value of Kprox (x ,z) will
also likely be very small, even if p (y = 1|x) is close to p (y = 1|z).
The star shape quality of proximity plots is likely to be due to this

phenomenon [8].

We will illustrate the proximity plots produced by applying MDS

to K∆
and K

path
λ can be qualitatively different that traditional

proximity plots. We revisit the probability model from Section 3.3

with a slight modification. We keep the set-up exactly the same,

except we generate x from a normal distribution in 12 dimensional

space instead of 2. The first two coordinates of each mean µi are
the same as before, but now we add on an additional 10 identical

coordinates to each mean. Since our data now lives in a higher

dimensional space, visualization is a more interesting problem.

In Figure 4 we plot the first two scaling coordinates using each

of the three kernels, where the plot points are colored according to

their true conditional class probability values. As reflected in our

discussion, the proximity plot produced by the random forest has

its characteristic start shape with three branches. The proximity

plots produced by K∆
and K

path
0.4 look very similar and break the

data up into four distinct clusters. This representation is appealing

in the sense that the data can be perfectly separated by a decision

tree of depth two which splits on the first two coordinates. In all

cases, points with similar conditional class probability are grouped

together.

4 EXPERIMENTS
In this section we will conduct a more extensive comparison be-

tween the random forest and the derived kernel methods. Specif-

ically, we will augment the probability estimation study in Sec-

tion 3.3 with eight synthetic data sets, and the visualization study

in Section 3.4 with five real world data sets from the UCI repository.

Our goal here is not to prove that one method uniformly domi-

nates another, but rather to provide evidence that K
path
λ and K∆

are useful kernels that produce qualitatively different results from

the usual random forest machinery.

4.1 Probability Estimation
We will compare the probability estimates produced by the follow-

ing three estimators:

(1) p̂r f (x) =
1

T
∑T
t=1 f (θt ,x)

(2) p̂∆ (x) =
∑n
i=1

K∆ (xi ,x)yi∑n
i=1 K∆ (xi ,x)

(3) p̂path (x) =
∑n
i=1

Kpath (xi ,x)yi∑n
i=1 Kpath (xi ,x)

.

Each estimator is constructed from the same random forest in each

simulation, which has T = 250 trees and the suggested default

value of F =
√
p for classification, where p is the number of input

variables. All models are trained on a data set of size n = 500, and

are evaluated in terms of misclassification error rate, Brier score,

and AUC over a test set of size n = 1,000. The results we report

in this section were constructed as averages over 25 repetitions of

each experiment. Finally, we note that when constructing Kpath
,

we choose λ by tuning over the out-of-bag (OOB) training data to

optimize for the Brier score. We consider five model classes, three

of which we compare in low and high dimensional settings, for

a total of eight simulation settings. The probability models were

chosen to span a wide range of phenomena, including additive and

non-additive response surfaces, sparse and dense features, as well

as more traditional models such as logistic regression.

4.1.1 Mease Model. The first model is the Mease model from
[14]. Each predictor x is drawn uniformly at random on [−28,28]2,

and the conditional probability of the response y is given by

p (y = 1|x) =




1 if | |x | |2 ≤ 8

28−| |x | |2
20

if x < 0

0 otherwise .

Generalizations of the Random Forest Kernel KDD 2018 Research Paper, August 2018, London, United Kingdom

(a) Misclassification Error

Mease One-d One-d
(sparse)

Friedman Friedman
(sparse)

Logistic Logistic
(sparse)

XOR

K∆
0.190 0.293 0.302 0.345 0.388 0.337 0.349 0.325

Kpath
0.189 0.300 0.303 0.321 0.367 0.339 0.344 0.338

random forest 0.206 0.365 0.328 0.286 0.346 0.363 0.350 0.386

(b) Brier Score

Mease One-d One-d
(sparse)

Friedman Friedman
(sparse)

Logistic Logistic
(sparse)

XOR

K∆
0.206 0.043 0.098 0.398 0.410 0.126 0.155 0.121

Kpath
0.108 0.079 0.102 0.378 0.401 0.094 0.137 0.123

random forest 0.156 0.196 0.121 0.349 0.385 0.154 0.127 0.207

(c) Area Under Curve (AUC)

Mease One-d One-d
(sparse)

Friedman Friedman
(sparse)

Logistic Logistic
(sparse)

XOR

K∆
0.875 0.712 0.700 0.736 0.695 0.724 0.723 0.697

Kpath
0.882 0.710 0.700 0.763 0.709 0.722 0.723 0.688

random forest 0.864 0.670 0.694 0.798 0.723 0.689 0.703 0.650

Table 1: Table of probability estimation results.

4.1.2 One Dimensional Model. We consider two versions of the

one dimensional model which was used in [15] and mentioned in

Section 3.1. In this model, x is drawn uniformly on [0,1]p , and y is

drawn according to

p (y = 1|x) =



0.3 if x1 ≥ 0

0.7 if x1 < 0.

In a low dimensional setting, we take p = 2, and in a higher dimen-

sional setting we take p = 50. Since all of the signal is contained in

the first coordinate, the latter model is very sparse.

4.1.3 Friedman Model. The Friedman model is a highly nonlin-

ear model taken from [9] which unlike the previous examples, does

not have an additive structure. The predictor x is drawn from a p
dimensional spherical normal distribution centered at the origin.

Condition on x , the response is drawn as

log

(
p (y = 1|x)

p (y = 0|x)

)
= 2(1 − x1 + x2 − · · · + x6) (x1 + · · · + x6).

We also consider dense and sparse version of this model, taking

p = 10 and p = 26.

4.1.4 Logistic Model. The logistic model generates data accord-
ing to the probability model implied by a logistic regression. We

draw x uniformly on [−1,1]p , where we take p = 3 and p = 23. In

the former case, every variable in the input space is related to the

response, where in the latter case the last 20 variables are noise

variables.

log

(
p (y = 1|x)

p (y = 0|x)

)
= x1 + x2 + x3

4.1.5 XOR Model. Finally, the xor model is a simple data gener-

ating process that takes x uniformly on [−1,1], and the probability

of y varies according to the parity of the signs of the coordinates of

x :

p (y = 1|x) =



0.3 if x1x2 ≥ 0

0.7 if x1x2 < 0.

4.1.6 Results. The results from these experiments are summa-

rized in Table 1. Aside from the Friedman model, the random forest

tended to perform slightly worse than the kernel regression with

Kpath
and K∆

across all metrics. The largest performance gaps

occurred in the dense one dimensional and xor model. These are two
models in particular in which we would expect these performance

gaps: the best predictor is given by a depth one tree in the first case

and a depth 2 tree in the second case. The action of K∆
is to em-

phasize informative splits, which would occur near the root of each

random tree, and the tuning implicit in Kpath
would encourage

effectively smaller trees.

We also notice that Kpath
and K∆

have similar performance, but

Kpath
does slightly better across all metrics in a few models. Again,

this might not be surprising since Kpath
incorporates explicitly

OOB tuning, while K∆
is entirely determined by the training data

used in each tree. While no method uniformly dominates the others,

we do see noticeable advantages of our alternative kernels, espe-

cially in cases where we expect the underlying data to be generated

from a simple model.

KDD 2018 Research Paper, August 2018, London, United Kingdom M. Olson et al.

Australian Credit Breast Cancer Mammographic Tic-Tac-Toe Wine

Figure 5: Data set visualizations. The first two rows show proximity plots from a random forest and K∆, while the last row
shows principal components. Points are colored according to class response.

4.2 Visualization
Our preliminary analysis with synthetic data in Section 3.4 indicated

that K∆
(and Kpath

) was able to produce qualitatively different

proximity plots than a random forest. Here, we construct proximity

plots using this kernel and a random forest on five real data sets from

the UCI Machine Learning Repository: Australian credit, Wisconsin
breast cancer,mammographic, tic-tac-toe, andwine. We also compare

these visualizationswith the first two principle components for each

data set. We chose to exclude K
path
λ from the data since it required

an explicit tuning parameter, and for the purposes of visualization

it is not clear what an objective criteria for this choice is.

Figure 5 shows the proximity plots produced for each data set.

The first row consists of traditional proximity plots produced by a

random forest, the second row shows those from K∆
, and the third

row plots the first two principle components of the data. Each plot

shows the class label plotted in a different color: all data sets have

two classes, with the exception of wine, which has three.

Again, we observe that in each case the random forest proximity

plots all have the characteristic star-shape, where each branch

contains training data with similar labels. The number of arms

in each is either one or two. The proximity plots produced by

K∆
are qualitatively much different, with a range of shapes and

clusters. Interestingly, both the random forest and K∆
both produce

visualizations that tend to separate the data according to class label

better than PCA. This is to be expected since these kernel methods

see class labels at training time, where PCA does not. The difference

Name n p Classes

Australian Credit 690 14 2

Breast Cancer 569 30 2

Mammographic 961 5 2

Tic-Tac-Toe 958 9 2

Wine 179 13 3

Table 2: Dataset Summary

in quality of visualization is especially apparent in the tic-tac-toe
data set. One reason for this might be the presence of categorical

variables in the data, for which all 9 predictors in this data set

consist of categorical variables. Trees are a much more natural

structure for dealing with discrete data compared to PCA, which

expects its inputs to be real valued.

5 DISCUSSION
The goal of this paper was to emphasize the close relationship be-

tween random forests and kernel methods. This relationship is both

implicit in the way in which a random forest creates probability

estimates, and explicit in a number of applications - such as visual-

ization - that deal directly with the proximity function. Our main

contribution was to generalize the proximity kernel to other notions

of tree-based similarity that take topology and split information

into consideration. We then demonstrate that these generalizations

Generalizations of the Random Forest Kernel KDD 2018 Research Paper, August 2018, London, United Kingdom

are useful alternatives to traditional random forests in probability

estimation, and produce qualitatively different visualizations.

There are a number of avenues for future work. First, one might

consider using these kernels in other kernelized tasks, such as

support vector machine classification, KernelPCA, or priors for

Gaussian processes [6]. It is also natural to consider using these

kernels in transfer learning applications. Recall from our previous

discussion that one advantage of random forest kernels over fixed

kernels (such as radial basis functions) is that they adaptively learn

their shape from the training data. Thus, it is plausible that these

kernels would perform well on related tasks.

We will also note here that kernel methods based on random

forests tend to be computationally expensive, with memory and

computational requirements of O (n2T). This limited us to data

sets and simulation settings with n = 1,000 or fewer observations.

However, all of the operations in kernel construction can be trivially

parallelized over trees which reduces this burden.

Finally, wewould like to emphasize that theK∆
kernel is only one

possible type of similaritymetric that incorporates split information.

Our proof of Proposition 3.2 illustrates that through a simple feature

embedding and appropriate choice of base kernel, one can construct

many additional variations.

REFERENCES
[1] Luis Antonio Belanche Muñoz and Alessandra Tosi. 2012. Averaging of kernel

functions. In ESANN 2012 proceedings, European Symposium on Artificial Neural
Networks, Computational Intelligence and Machine Learning. Bruges (Belgium),
25-27 April 2012,.,. 363–368.

[2] Leo Breiman. 2000. Some infinity theory for predictor ensembles. Technical Report.
Technical Report 579, Statistics Dept. UCB.

[3] Leo Breiman. 2001. Random Forests. Machine Learning 45 (2001), 5–32.

[4] Leo Breiman. 2002. Manual on setting up, using, and understanding random

forests v3. 1. Statistics Department University of California Berkeley, CA, USA 1

(2002).

[5] Leo Breiman, Jerome Friedman, Charles J Stone, and Richard A Olshen. 1984.

Classification and regression trees. CRC press.

[6] Alex Davies and Zoubin Ghahramani. 2014. The random forest kernel and other

kernels for big data from random partitions. arXiv preprint arXiv:1402.4293 (2014).
[7] Cristofer Englund and Antanas Verikas. 2012. A novel approach to estimate prox-

imity in a random forest: An exploratory study. Expert systems with applications
39, 17 (2012), 13046–13050.

[8] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. 2001. The elements of
statistical learning. Vol. 1. Springer series in statistics New York.

[9] Jerome Friedman, Trevor Hastie, Robert Tibshirani, et al. 2000. Additive logistic

regression: a statistical view of boosting (with discussion and a rejoinder by the

authors). The annals of statistics 28, 2 (2000), 337–407.
[10] Tommi Jaakkola and David Haussler. 1999. Exploiting generative models in

discriminative classifiers. In Advances in neural information processing systems.
487–493.

[11] Andy Liaw, Matthew Wiener, et al. 2002. Classification and regression by ran-

domForest. R news 2, 3 (2002), 18–22.
[12] Yi Lin and Yongho Jeon. 2006. Random forests and adaptive nearest neighbors. J.

Amer. Statist. Assoc. 101, 474 (2006), 578–590.
[13] Gilles Louppe, Louis Wehenkel, Antonio Sutera, and Pierre Geurts. 2013. Un-

derstanding variable importances in forests of randomized trees. In Advances in
neural information processing systems. 431–439.

[14] David Mease, Abraham J Wyner, and Andreas Buja. 2007. Boosted classification

trees and class probability/quantile estimation. Journal of Machine Learning
Research 8, Mar (2007), 409–439.

[15] Matthew Olson and Abraham J. Wyner. [n. d.]. Making Sense of Random Forest

Probabilities: a Kernel Perspective. ([n. d.]).

[16] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,

Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,

Vincent Dubourg, et al. 2011. Scikit-learn: Machine learning in Python. Journal
of Machine Learning Research 12, Oct (2011), 2825–2830.

[17] Erwan Scornet. 2016. Random forests and kernel methods. IEEE Transactions on
Information Theory 62, 3 (2016), 1485–1500.

[18] Erwan Scornet, Gerard Biau, Jean-Philippe Vert, et al. 2015. Consistency of

random forests. The Annals of Statistics 43, 4 (2015), 1716–1741.

[19] Charles Semple and A Mike. 2003. Phylogenetics. Oxford University Press on

Demand.

[20] John Shawe-Taylor and Nello Cristianini. 2004. Kernel methods for pattern analysis.
Cambridge university press.

[21] Alex J Smola and Bernhard Schölkopf. 1998. Learning with kernels. GMD-

Forschungszentrum Informationstechnik.

[22] Gleb B Sologub. 2011. On measuring of similarity between tree nodes. (2011).

	Abstract
	1 Introduction
	2 Background
	2.1 Random Forest Ensembles
	2.2 The Proximity Kernel

	3 Random Tree Kernels
	3.1 Topology-Induced Kernels
	3.2 Incorporating Split Information into Similarity Measures
	3.3 Kernel Comparison I: Probability Estimation
	3.4 Kernel Comparison II: Visualization

	4 Experiments
	4.1 Probability Estimation
	4.2 Visualization

	5 Discussion
	References

