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Abstract

This paper investigates a scalable optimization procedure to the
low-rank matrix completion problem posed by Candes and Recht [2].
We identify the singular value decomposition as a computational bot-
tleneck for large problem instances, and propose utilizing an approxi-
mately computed SVD borne out of recent advances in random linear
algebra. We then use this approximately computed SVD to implement
some popular first order methods for solving the matrix completion
problem. Our results indicate that these modified routines can easily
handle very large data sets. In particular, we are able to recover 35
million entries from a 104 × 104 matrix in a matter of minutes.

1 Introduction

1.1 Motivation

A great deal of current research in statistics has focused around exploiting
structured sparsity in large data sets. One important example of this consists
of the recovery of a low-rank matrix from its partially observed entries. As
a motivating example, suppose one asks a group of m people to rate a large
collection of n movies. One can then collect this data in a m × n matrix
M, where the rows are indexed by people, and the columns are indexed
by movies. Of course, not every person will have seen every movie, so this
matrix will in general have many missing entries. The goal is to fill in these
missing entries so that one can infer how a person would rate a movie he
has not seen yet. This type of problem has found a variety of applications
ranging from movie recommender systems to computer vision.

Generally speaking, the problem of inferring missing entries from a par-
tially observed matrix is an ill-posed problem: there are many different ways
one could “complete” the matrix. However, Candes and Recht showed that
if one assumes the underlying matrix is low-rank, one can recover the matrix
exactly with high probability by solving a convex optimization problem [2].
In order to formulate the optimization problem, let Ω consist of the indices
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of a m × n matrix M that are observed, and let PΩ (X) be the orthogonal
projection of a matrix X on the set of all matrices that are zero except
possibly at the indices in Ω. To recover the underlying matrix, Candes and
Recht propose solving 1

minimize
X∈Rm×n

||X||∗

subject to PΩ (X) = PΩ (M)
(1)

where ||X||∗ is the nuclear norm, i.e. the sum of the singular values of X.
The nuclear norm is often used as a computationally tractable relaxation
for the rank of a matrix.

1.2 Computational Challenges

When the dimensions of the underlying matrix m and n are at most a few
hundred, problem (1) can be efficiently solved as a semidefinite program
using interior point methods. However, this is no longer the case when one
considers data sets with thousands, if not hundreds of thousands of rows and
columns (for example, movie rating data sets can easily consist of tens of
thousands of users rating thousands of movies). As a result, it is imperative
to find optimization routines that scale well to huge data sets to use low-rank
matrix recovery in practical settings.

The most widely investigated optimization methods for this problem are
first order methods that involve evaluating the subdifferential or proximal
operator (to be defined later) of the nuclear norm. Computing these quanti-
ties boils down to a computing a partial or full singular value decomposition
of a very large matrix. It is widely known that computing singular value de-
compositions of very large matrices can become prohibitively expensive, and
so a recent line of research has developed randomized methods that scale
well for approximately computing singular values and vectors: the algorithm
we consider in this paper is the ThinSVD from [7].

This aim of this paper is to utilize the scalable SVD from [7] to solve
large scale instances of (1). In particular, we will implement two pop-
ular optimization procedures, the Singular Value Thresholding Algorithm
and Douglas-Rachford splitting, using the ThinSVD. Computational exper-
iments show that these modified procedures scale very well with the size of
the data, and we are able to recover matrices as large as 104 × 104 in a few
minutes on a desktop computer.

1This procedure solves the so called matrix completion problem in the “noiseless”
setting. One can also consider the related problem of observing the matrix entries with,
say, Gaussian error.
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2 Algorithms

This section will describe the optimization procedures that will be used in
subsequent parts of the paper, namely, the Singular Value Thresholding
algorithm (SVT) [5] and Douglas-Rachford splitting. The first algorithm
was designed specifically to solve (1), while the second is a general purpose
algorithm for minimizing the sum of two closed, convex functions. Both
methods are based on the proximal mapping of a convex function, which we
will describe below.

2.1 Proximal Operator

We will begin by defining the proximal mapping of a closed, convex function,
and then will derive some useful properties specific to the nuclear norm.

Definition 2.1. Let f : Rn → R be a closed convex function. The proximal
mapping of f evaluated at x ∈ Rn is defined as

proxf (x) = arg min
u

f(u) + 1/2||x− u||2.

The first thing to note is that the proximal operator is well-defined: if
f is closed and convex, then f(u) + 1/2||x − u||2 is strongly convex and so
it has a unique minimizer. In practice, one can often think of the proximal
operator as a projection. In fact, if δC(x) is the indicator of a closed, convex
set C, that is

δC(x) =
{

0 x ∈ C
∞ x 6∈ C

then it is easy to see that proxδC (x) is simply the projection of x onto
C. As it will be an essential building block in the optimization procedures
described in following sections, our first result will be to calculate the prox-
imity operator of the nuclear norm. This calculation will be based on a
well-known theorem about the subgradients of certain symmetric matrix
norms due to Lewis [6].

Theorem 2.2 (Lewis, 1995). Let UΣV T be a singular value decomposition
for X ∈ Rm×n, and let σ : Rm×n → Rm∧n be the function that maps a matrix
to its spectrum in non-increasing order, i.e. σ(X) = diag(Σ). Suppose
F : Rm×n → R is a convex function that can be written F (X) = g(σ(X))
where g : Rm∧n → R is a convex function that is permutation invariant in
its arguments. Then

∂F (X) =
{
Udiag(g)V T | g ∈ ∂g(σ(X))

}
.

The content of the above theorem is that the subgradient of a lot of
matrix norms, in partcular the nuclear norm and spectral norm, can be
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computed easily once one has a singular value decomposition in hand. We
will use this result to derive the proximal operator proxλ||.||∗ (X), which we
will denote in the future as Sλ.

Result 2.3. If X = UΣV T is a singular value decomposition, then

proxλ||.||∗ (X) = Udiag((σ(X)− λ)+) V T .= Sλ(X).

Proof. First, using the subdifferential characterization of the minimum of a
convex function, Y = Sλ(X) = arg min

U
λ||U ||∗+ 1/2||X −U ||2 if and only if

0 ∈ ∂
(
λ||Y ||∗ + 1/2||Y −X||2F

)
= λ∂||Y ||∗ + (Y − X). Let us try to

solve this inclusion by assuming Y = U∆V T where ∆ is a diagonal ma-
trix with the same dimensions as Σ. We can then reduce the inclusion to
0 ∈ λ∂||∆||∗+ (∆−Σ), and this holds precisely when ∆ii = (Σii− λ)+.

In other words, the proximal operator of the scaled nuclear norm is a
simple soft-thresholding operation on the singular values of a matrix. As
this operation can only reduce the rank of a matrix, it can heuristically
be thought of as the reason nuclear norm minimzation produces low rank
matrices. It is also worth noting at this point that the vector analogue of
the nuclear norm is the `1 norm, and the corresponding proximal operator
is the analogous vector soft-thresholding operator sλ(v) for v ∈ Rn

(sλ(v))i = sign(vi)(|vi| − λ)+.

This operation plays a central role in FISTA, a popular solution method
for LASSO regression[1]. We will conclude with a final useful fact about
proximal operators that reinforces their similarity to projection operators.

Result 2.4. The proximal mapping is nonexpansive:

||proxf (x)− proxf (y) || ≤ ||x− y||.

Proof. Let u = proxf (x) and v = proxf (y). Then (x − u) ∈ ∂f(u) and
(y − v) ∈ ∂f(v). The characterization of the subgradient implies the two
inequalities

f(v) ≥ f(u) + (x− u)T (v − u)

f(u) ≥ f(v) + (y − v)T (u− v).

If we add the first inequality to the second, we get 0 ≥ (x − y)T (v − u) +
||v − u||2. An application of the Cauchy-Schwartz inequality then allows us
to conclude.

For us, the practical value of Result 2.3 and Result 2.4 is as follows.
Result 2.3 says that in order to compute first order quantities associated
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with a scaled nuclear norm, we need only be able to compute the singular
values above a certain threshhold. Result 2.4 says that the “error” we get
from computing the proximal operator a a nearby point is no greater than
the error we get from the first approximation. These facts suggest that a
fast, approximate SVD calculation could be a useful tool in computations
involved with solving (1). This is explored more in Section 3. For much
more on the proximal mapping, see [8].

2.2 Singular Value Thresholding Algorithm

We will now consider a widely cited algorithm for solving the matrix comple-
tion problem, namely the Singular Value Thresholding algorithm, or SVT
for short [5]. The authors of [5] propose solving the following related problem
to (1), namely

minimize
X

τ ||X||∗ +
1
2
||X||2F

subject to PΩ (X) = PΩ (M) .
(2)

They show that as τ → ∞ the solution to this problem approaches that of
(1), and they propose the following iterative scheme:

Y0 = 0
Xk = Sτ (Yk−1)
Yk = Yk + δk (PΩ (M)− PΩ (Xk)) .

These iterations can be obtained as gradient ascent applied to the dual
formulation of (2). To see this, denote the Lagrangian of the problem (2)
by L (X,Y) = τ ||X||∗ + 1/2||X||2F + 〈Y, (PΩ (Xk)− PΩ (M))〉 and the dual
function q(Y) = infX L(X,Y). Since strong duality holds, it is enough to
maximize q(Y ) and we can do this via gradient ascent. Note that q(Y)
is differentiable since the objective function is strongly convex, and so the
gradient can be found simply as

5Yg(Y) = 5YL(X̃,Y) = (PΩ (M)− PΩ (X))

where

X̃ = arg min
X

L(X,Y)

= arg min
X

τ ||X||∗ + 1/2||X− PΩ (Y ) ||2F

= Sτ(PΩ (Y)).

Cai, et al. [5] make the crucial observation that, at least empirically,
the iterates {Xk} tend to increase in rank monotonically to the solution of
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(2). This fact is key to computation for large problems, as one only needs
to compute a truncated SVD at intermediate steps of the procedure. In the
results section, we will take advantage of this fact when implementing the
SVT by making use of the ThinSVD.

2.3 Douglas-Rachford Splitting

The second optimization procedure we consider to solve (1) is Douglas-
Rachford splitting. This is a general purpose method that can be applied
to minimize the sum of two closed, convex functions without assuming dif-
ferentiability. When applied to the dual, it is also know as the Alternating
Direction Method of Multipliers (ADMM). ADMM has seen a recent surge
in interest as a routine for solving problems from large scale optimization
problems in machine learning and compressed sensing [9]. For this reason,
and others to be described, it is a reasonable candidate to try out on (1). See
Combettes et al. [3] for a thorough discussion of Douglas-Rachford splitting
in signal processing problems.

Suppose we wish to minimize h(x) = f(x) + g(x). Such problems are
known as “composite” since the objective function can be decomposed into
the sum of functions which are hopefully easier to handle. For λ > 0 define
the following operator based on the proximal mappings of f and g:

Fλ(z) = z + proxλf
(
2proxλg (z)− z

)
− proxλg (z) .

Using the result below, it turns out that to minimize h we simply need to
find a fixed point of Fλ(z).

Result 2.5. If z = Fλ(z) then x = proxλg (z) is a minimizer of f + g.

Proof. If z = Fλ(z) and x = proxλg (z), then proxλf (2x− z) = x. The
former fact (x = proxλg (z)) implies that z − x ∈ λ∂g(x) while the latter
implies x−z ∈ λ∂f(x). Adding this two inclusions, we get that 0 ∈ λ∂f(x)+
λ∂g(x). Hence, x minimizes f + g.

It turns out that we can find fixed points of Fλ(z) by iterating zk =
Fλ(zk−1). Specializing this to the problem (1) and introducing some auxil-
iary variables into the fixed point iteration, we get the the following iterative
optimziation scheme:

Xk = Sλ(Zk−1)

Zk = 2Xk − Zk−1

Xk+1 = PΩ

(
Zk

)
Zk+1 = Zk +Xk+1 −Xk.

Note in particular that the first and third steps involve the evaluation of
the proximal operator. This procedure also has a worst case run-time of
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O(1/k), which is much better than a naive projected subgradient method
which would involve the same computational cost. Importantly for us, it
turns out that this procedure still converges even if the proximal operators
are evaluated with error (as long as the errors are summable) [4]. As the
bulk of the computational cost is in computing a SVD, this result allows
us to consider faster approximate SVD calculations via the ThinSVD. This
possibility is explored in a later section.

2.4 Randomized SVD

As described briefly in the previous sections, ThinSVD is a randomized algo-
rithm in linear algebra that provides a fast and scalable truncated singular
value decomposition [7]. Suppose we have a m × n matrix A and we wish
to find a good rank-k approximation to A in the spectral or frobenius norm
sense. It happens that (with some slight tweaks) Y = AΩ is a very good
candidate, where Ω is a n × p (p > k) matrix consisting of random Gaus-
sian entries. The intuition behind this result is that as ker(A) is a proper
subspace of Rm, then the columns of Ω almost surely miss ker(A). We can
then perform an SVD on Y to obtain a good rank-k approximation to A.
2. The ThinSVD is outlined below

1) Draw a random Gaussian m× (k+p) matrix Ω.

2) Set Y = AΩ.

3) Use a QR decomposition to find Y = QR.

4) Perform SVD to find QTA = ÛΣVT .

5) Set U = QÛ

When looking at the ThinSVD algorithm, it is essential to note that
the QR and SVD decompositions in steps (3) and (4) are done on matrices
with far less column than A, and are thus relatively cheap to compute. The
majority of the work, therefore, is spent on randomly generating Gaussian
numbers and matrix multiplication. These operations readily lend them-
selves to parallel, large scale computations, and for this reason randomized
methods in linear algebra are becoming an intensely researched area [7].
The remaining sections will explore how this tool can be used to evaluate
the proximal operator of the nuclear norm, providing a scalable first order
method for nuclear norm minimization.

2A technical detail that matters in practice, the rate of decay of the singular values
of A greatly affects the quality of this approximation. One can employ oversampling and
power-iteration “tweaks” to mitigate problems like this. See [7] for more details
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3 Numerical Results

In this section we will provide the results of some computational experi-
ments that will illustrate the usefulness of using the ThinSVD in the SVT
and Douglas-Rachford splitting approaches to solving (1). We will begin
by discussing the implementation details, and then discuss results from low
rank matrix recovery, euclidean distance matrix completion, and a real data
matrix completion problem. It is worth noting that in all of these settings,
the problem sizes are much too large for cone solvers based on interior point
methods to handle (for instance, CVX on our desktop chokes once the prob-
lem dimensions exceed a few hundred).

3.1 Implementation Details

The major novelty in our application of the SVT and Douglas-Rachford
splitting procedures to solve (1) is the use of a randomized SVD to approx-
imate the proximal operator of the nuclear norm. As described in Section
2, the proximal operator simply thresholds singular values below a certain
level. Therefore, to approximate this operation, we used the random SVD
to find the first 100 singular values and vectors of a matrix, and then thresh-
olded these quantities accordingly: if the smallest singular value was above
the threshold level, we computed an additional “chunk” of singular values
and vectors 3. Previous literature uses exact partial SVD calculations in
this step (such as those provided via the Lanczos algorithm), but we find
that the random SVD scales better and is thus appropriate for large data
problems.

Both algorithms also required chosing some additional tuning parame-
ters. For the SVT, we followed the suggestions in [5] and chose τ = 5

√
nm

and δ = 1.2p, where n and m are the number of rows and columns of the
matrix we are trying to recover, and p is the proportion of entries we ob-
serve. For the Douglas-Rachford method, we chose a thresholding level of
λ = 200. This choice required some tinkering, and had a suprising affect on
the rate of convergence.

Finally, we declared convergence for each algorithm once the relative
reconstruction error

||X −X∗||F
||X∗||F

was less than ε = 10−4. In our experiments we knew the solution ahead of
time, and so we used this convergence criterion so that we could compare
the speed of each algorithm. In practice, one would clearly use different
convergence criteria.

3The number 100 is a somewhat arbitrary number, but as a tuning parameter it worked
well for our experiments. There also exist easily implementable incremental methods that
wouldn’t require choosing a predetermined number of singular values to compute.
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3.2 Gaussian Matrix Recovery

SVT Douglas-Rachford
N Rank Iterations Time Iterations Time

1 5000 10 42 90 52 106
2 5000 20 48 101 54 112
3 5000 50 50 128 66 136
4 10000 10 38 275 52 343
5 10000 20 42 305 54 380
6 10000 50 48 351 60 420

Table 1: Gaussian Matrix Recovery Results

In the first experiment we recover large randomly generated matrices of
varying ranks from partially observed entries. As an illustration, to generate
a problem with rank 50 and dimensions 5 × 103 by 5 × 103, we generate a
5 × 103 by 50 matrix M1 of Gaussian entries, a 50 by 5 × 103 matrix M2

with Gaussian entries, and then we form the product M = M1M2. We then
“reveal” 30% of these entries uniformly at random to our algorithm.

Table 3.2 provides the number of iterations and time for the SVT and
Douglas-Rachford algorithm to solve (1) for problems with varying size and
rank. Even with the approximately evaluated singular value thresholding
operator, both procedures “recover” the original matrix in a reasonably
short amount of time. For instance, the SVT recovered a rank 10 matrix
of size 104 × 104 in under five minutes. It appears that the time until
convergence for both procedures increases with the rank of the problem,
but not dramatically.

3.3 Euclidean Distance Matrix Recovery

SVT Douglas-Rachford
N Iterations Time Iterations Time

1 1000 50 9 58 10
2 5000 32 69 54 113
3 10000 28 201 74 523

Table 2: Euclidean Distance Matrix Results

In the second computational experiment, we solve problem (1) when
the underlying matrix is a Eucidean distance matrix of vectors in R10. In
general, Euclidean distance matrices of vectors in Rm are known to have
rank at most m + 2, and thus they are inherently low rank objects. In
order to generate examples from this problem class, we first generate N
five dimensional vectors x1, . . . , xN , and then form the matrix M, where
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(M)i,j = ||xi − xj ||22. As in the previous section, we (somewhat arbitrarily)
reveal 30% of the entries of this matrix, and then we solve (1) using the SVT
and Douglas-Rachford algorithms. Table 3.2 provides the time to conver-
gence for each of these algorithms under a variety of problem sizes. Again,
in these large problems each procedure converges quite quickly. It is worth
noting that for very small problem sizes (N < 500) some further tweaks were
needed to get both the SVT and Douglas-Rachford procedures to converge.
In particular, when the spectrum of a matrix does not decay quickly, the
approximation of the ThinSVD suffers. One then needs to perform power
iterations (see [7] for more details). From our experience, despite this addi-
tional effort, the ThinSVD still appears to outperform other truncated SVD
procedures. In particular, we found that Matlab’s partial SVD command
svds could be at least ten times slower than the random partial SVD we
used, and the scaling only got worse with problem size.

3.4 Image Recovery

The final example we consider is one of the canonical illustrations of ma-
trix completion, recovering the MIT logo from a small set of observations.
We consider a grayscale 1500× 2800 image of the MIT logo and sample at
random 30% of its entries. Using the the same procedure as in the previous
sections, we were able to recover a good reconstruction of the true image.
Figure 1 shows the sampled image (where missing entries are filled in with
noise for illustration purposed), and Figure 2 shows the recovered image.
In this case, the SVT converged after 230 iterations in 120 seconds, while
Douglas-Rachford splitting converged after 56 iterations in 30 seconds. This
illustrates that neither procedure dominates the other in terms of conver-
gence speed.

4 Discussion

The goal of this paper was to demonstrate that optimization algorithms
for the matrix compeltion problem (1) can be modified to recover large
matrices in a scalable way. The key computation tool was the randomized
singular value decompostion, which we used to approximately evaluate the
proximal operator of the nuclear norm, the soft singular value thresholding
operator. We then illustrated this in a series of computational experiments
by implementing the SVT and Douglas-Rachford splitting methods to solve
large scale instances of (1). We were able to recover 104 × 104 matrices
in a matter of minutes. Furthermore, we observed in practice that the
randomized SVD was anywhere from three to ten or higher times faster
than determinstic partial SVD calculations.

In Section 2 we pointed out that the subdifferential and proximal map-
ping of many matrix norms depend on efficiently computing a singular value
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Figure 1: Partially observed logo.

Figure 2: Image recovered by SVT algorithm.

decomposition. These include the spectral norm, nuclear norm, frobenius
norm, and more generally any Shatten-p norms. This suggests that the
methodology covered in this paper could also be applied to solve large scale
instances of other problems in statisics involving these matrix norms.
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